CubeGotchi/cpu.c

2004 lines
48 KiB
C
Raw Normal View History

2024-06-11 16:36:51 +00:00
/*
* TamaLIB - A hardware agnostic Tamagotchi P1 emulation library
*
* Copyright (C) 2021 Jean-Christophe Rona <jc@rona.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <pgmspace.h>
#include "cpu.h"
#include "hw.h"
#include "hal.h"
//#include "rom_new.h"
#include "rom_12bit.h"
#define CPU_SPEED_RATIO 1
#define TICK_FREQUENCY 32768 // Hz
#define TIMER_1HZ_PERIOD 32768 // in ticks
#define TIMER_256HZ_PERIOD 128 // in ticks
#define MASK_4B 0xF00
#define MASK_6B 0xFC0
#define MASK_7B 0xFE0
#define MASK_8B 0xFF0
#define MASK_10B 0xFFC
#define MASK_12B 0xFFF
#define PCS (pc & 0xFF)
#define PCSL (pc & 0xF)
#define PCSH ((pc >> 4) & 0xF)
#define PCP ((pc >> 8) & 0xF)
#define PCB ((pc >> 12) & 0x1)
#define TO_PC(bank, page, step) ((step & 0xFF) | ((page & 0xF) << 8) | (bank & 0x1) << 12)
#define NBP ((np >> 4) & 0x1)
#define NPP (np & 0xF)
#define TO_NP(bank, page) ((page & 0xF) | (bank & 0x1) << 4)
#define XHL (x & 0xFF)
#define XL1 (x & 0xF)
#define XH1 ((x >> 4) & 0xF)
#define XP ((x >> 8) & 0xF)
#define YHL (y & 0xFF)
#define YL1 (y & 0xF)
#define YH1 ((y >> 4) & 0xF)
#define YP ((y >> 8) & 0xF)
#define M(n) get_memory(n)
#define SET_M(n, v) set_memory(n, v)
#define RQ(i) get_rq(i)
#define SET_RQ(i, v) set_rq(i, v)
#define SPL1 (sp & 0xF)
#define SPH1 ((sp >> 4) & 0xF)
#define FLAG_C (0x1 << 0)
#define FLAG_Z (0x1 << 1)
#define FLAG_D (0x1 << 2)
#define FLAG_I (0x1 << 3)
#define C !!(flags & FLAG_C)
#define Z !!(flags & FLAG_Z)
#define D !!(flags & FLAG_D)
#define I !!(flags & FLAG_I)
#define SET_C() {flags |= FLAG_C;}
#define CLEAR_C() {flags &= ~FLAG_C;}
#define SET_Z() {flags |= FLAG_Z;}
#define CLEAR_Z() {flags &= ~FLAG_Z;}
#define SET_D() {flags |= FLAG_D;}
#define CLEAR_D() {flags &= ~FLAG_D;}
#define SET_I() {flags |= FLAG_I;}
#define CLEAR_I() {flags &= ~FLAG_I;}
#define REG_CLK_INT_FACTOR_FLAGS 0xF00
#define REG_SW_INT_FACTOR_FLAGS 0xF01
#define REG_PROG_INT_FACTOR_FLAGS 0xF02
#define REG_SERIAL_INT_FACTOR_FLAGS 0xF03
#define REG_K00_K03_INT_FACTOR_FLAGS 0xF04
#define REG_K10_K13_INT_FACTOR_FLAGS 0xF05
#define REG_CLOCK_INT_MASKS 0xF10
#define REG_SW_INT_MASKS 0xF11
#define REG_PROG_INT_MASKS 0xF12
#define REG_SERIAL_INT_MASKS 0xF13
#define REG_K00_K03_INT_MASKS 0xF14
#define REG_K10_K13_INT_MASKS 0xF15
#define REG_PROG_TIMER_DATA_L 0xF24
#define REG_PROG_TIMER_DATA_H 0xF25
#define REG_PROG_TIMER_RELOAD_DATA_L 0xF26
#define REG_PROG_TIMER_RELOAD_DATA_H 0xF27
#define REG_K00_K03_INPUT_PORT 0xF40
#define REG_K10_K13_INPUT_PORT 0xF42
#define REG_K40_K43_BZ_OUTPUT_PORT 0xF54
#define REG_CPU_OSC3_CTRL 0xF70
#define REG_LCD_CTRL 0xF71
#define REG_LCD_CONTRAST 0xF72
#define REG_SVD_CTRL 0xF73
#define REG_BUZZER_CTRL1 0xF74
#define REG_BUZZER_CTRL2 0xF75
#define REG_CLK_WD_TIMER_CTRL 0xF76
#define REG_SW_TIMER_CTRL 0xF77
#define REG_PROG_TIMER_CTRL 0xF78
#define REG_PROG_TIMER_CLK_SEL 0xF79
#define INPUT_PORT_NUM 2
typedef struct {
//char *log;
u12_t code;
u12_t mask;
// u12_t shift_arg1;
// u12_t mask_arg1; // != 0 only if there are two arguments
u8_t cycles;
// void (*cb0)(u8_t arg0, u8_t arg1);
} op_t0;
typedef struct {
//char *log;
// u12_t code;
// u12_t mask;
// u12_t shift_arg1;
// u12_t mask_arg1; // != 0 only if there are two arguments
// u8_t cycles;
void (*cb1)(u8_t arg0, u8_t arg1);
} op_t1;
typedef struct {
u4_t states;
} input_port_t;
/* Registers */
static u13_t pc, next_pc;
static u12_t x, y;
static u4_t a, b;
static u5_t np;
static u8_t sp;
/* Flags */
static u4_t flags;
//static const u12_t *g_program = NULL;
static u4_t memory[MEMORY_SIZE];
//static u4_t io_memory[MEM_IO_SIZE];
static input_port_t inputs[INPUT_PORT_NUM] = {{0}};
//static u8_t maxNumber = 0;
/* Interrupts (in priority order) */
static interrupt_t interrupts[INT_SLOT_NUM] = {
{0x0, 0x0, 0, 0x0C}, // Prog timer
{0x0, 0x0, 0, 0x0A}, // Serial interface
{0x0, 0x0, 0, 0x08}, // Input (K10-K13)
{0x0, 0x0, 0, 0x06}, // Input (K00-K03)
{0x0, 0x0, 0, 0x04}, // Stopwatch timer
{0x0, 0x0, 0, 0x02}, // Clock timer
};
//static breakpoint_t *g_breakpoints = NULL;
static u32_t call_depth = 0;
static u32_t clk_timer_timestamp = 0; // in ticks
static u32_t prog_timer_timestamp = 0; // in ticks
static bool_t prog_timer_enabled = 0;
static u8_t prog_timer_data = 0;
static u8_t prog_timer_rld = 0;
static u32_t tick_counter = 0;
static u32_t ts_freq;
//static u8_t speed_ratio = 0;
static timestamp_t ref_ts;
/*
static state_t cpu_state = {
.pc = &pc,
.x = &x,
.y = &y,
.a = &a,
.b = &b,
.np = &np,
.sp = &sp,
.flags = &flags,
.tick_counter = &tick_counter,
.clk_timer_timestamp = &clk_timer_timestamp,
.prog_timer_timestamp = &prog_timer_timestamp,
.prog_timer_enabled = &prog_timer_enabled,
.prog_timer_data = &prog_timer_data,
.prog_timer_rld = &prog_timer_rld,
.call_depth = &call_depth,
.interrupts = interrupts,
.memory = memory,
}; */
void cpu_add_bp(breakpoint_t **list, u13_t addr)
{
/* breakpoint_t *bp;
bp = (breakpoint_t *) g_hal->malloc(sizeof(breakpoint_t));
if (!bp) {
g_hal->log(LOG_ERROR, "Cannot allocate memory for breakpoint 0x%04X!\n", addr);
return;
}
bp->addr = addr;
if (*list != NULL) {
bp->next = *list;
} else {
bp->next = NULL;
}
*list = bp; */
}
void cpu_free_bp(breakpoint_t **list)
{
/* breakpoint_t *bp = *list, *tmp;
while (bp != NULL) {
tmp = bp->next;
g_hal->free(bp);
bp = tmp;
}
*list = NULL; */
}
/*
void cpu_set_speed(u8_t speed)
{
speed_ratio = speed;
}*/
void cpu_get_state(cpu_state_t *cpustate)
{
cpustate->pc = pc;
cpustate->x = x;
cpustate->y = y;
cpustate->a = a;
cpustate->b = b;
cpustate->np = np;
cpustate->sp = sp;
cpustate->flags = flags;
cpustate->tick_counter = tick_counter;
cpustate->clk_timer_timestamp = clk_timer_timestamp;
cpustate->prog_timer_timestamp = prog_timer_timestamp;
cpustate->prog_timer_enabled = prog_timer_enabled;
cpustate->prog_timer_data = prog_timer_data;
cpustate->prog_timer_rld = prog_timer_rld;
cpustate->call_depth = call_depth;
cpustate->memory = (u4_t *)memory;
uint8_t i;
for(i=0;i<6;i++) {
cpustate->interrupts[i].factor_flag_reg = interrupts[i].factor_flag_reg;
cpustate->interrupts[i].mask_reg = interrupts[i].mask_reg;
cpustate->interrupts[i].triggered = interrupts[i].triggered;
cpustate->interrupts[i].vector = interrupts[i].vector;
}
}
void cpu_set_state(cpu_state_t *cpustate)
{
pc = cpustate->pc;
x = cpustate->x;
y = cpustate->y;
a = cpustate->a;
b = cpustate->b;
np = cpustate->np;
sp = cpustate->sp;
flags = cpustate->flags;
tick_counter = cpustate->tick_counter;
clk_timer_timestamp = cpustate->clk_timer_timestamp;
prog_timer_timestamp = cpustate->prog_timer_timestamp;
prog_timer_enabled = cpustate->prog_timer_enabled;
prog_timer_data = cpustate->prog_timer_data;
prog_timer_rld = cpustate->prog_timer_rld;
call_depth = cpustate->call_depth;
//memory = (u4_t *)cpustate->memory;
uint8_t i;
for(i=0;i<6;i++) {
interrupts[i].factor_flag_reg = cpustate->interrupts[i].factor_flag_reg;
interrupts[i].mask_reg = cpustate->interrupts[i].mask_reg;
interrupts[i].triggered = cpustate->interrupts[i].triggered;
interrupts[i].vector = cpustate->interrupts[i].vector;
}
}
u32_t cpu_get_depth(void)
{
return call_depth;
}
static void generate_interrupt(int_slot_t slot, u8_t bit)
{
/* Set the factor flag no matter what */
interrupts[slot].factor_flag_reg = interrupts[slot].factor_flag_reg | (0x1 << bit);
/* Trigger the INT only if not masked */
if (interrupts[slot].mask_reg & (0x1 << bit)) {
interrupts[slot].triggered = 1;
}
}
void cpu_set_input_pin(pin_t pin, pin_state_t state)
{
/* Set the I/O */
inputs[pin & 0x4].states = (inputs[pin & 0x4].states & ~(0x1 << (pin & 0x3))) | (state << (pin & 0x3));
/* Trigger the interrupt (TODO: handle relation register) */
if (state == PIN_STATE_LOW) {
switch ((pin & 0x4) >> 2) {
case 0:
generate_interrupt(INT_K00_K03_SLOT, pin & 0x3);
break;
case 1:
generate_interrupt(INT_K10_K13_SLOT, pin & 0x3);
break;
}
}
}
void cpu_sync_ref_timestamp(void)
{
ref_ts = g_hal->get_timestamp();
}
static u4_t get_io(u12_t n)
{
u4_t tmp;
switch (n) {
case REG_CLK_INT_FACTOR_FLAGS:
/* Interrupt factor flags (clock timer) */
tmp = interrupts[INT_CLOCK_TIMER_SLOT].factor_flag_reg;
interrupts[INT_CLOCK_TIMER_SLOT].factor_flag_reg = 0;
return tmp;
case REG_SW_INT_FACTOR_FLAGS:
/* Interrupt factor flags (stopwatch) */
tmp = interrupts[INT_STOPWATCH_SLOT].factor_flag_reg;
interrupts[INT_STOPWATCH_SLOT].factor_flag_reg = 0;
return tmp;
case REG_PROG_INT_FACTOR_FLAGS:
/* Interrupt factor flags (prog timer) */
tmp = interrupts[INT_PROG_TIMER_SLOT].factor_flag_reg;
interrupts[INT_PROG_TIMER_SLOT].factor_flag_reg = 0;
return tmp;
case REG_SERIAL_INT_FACTOR_FLAGS:
/* Interrupt factor flags (serial) */
tmp = interrupts[INT_SERIAL_SLOT].factor_flag_reg;
interrupts[INT_SERIAL_SLOT].factor_flag_reg = 0;
return tmp;
case REG_K00_K03_INT_FACTOR_FLAGS:
/* Interrupt factor flags (K00-K03) */
tmp = interrupts[INT_K00_K03_SLOT].factor_flag_reg;
interrupts[INT_K00_K03_SLOT].factor_flag_reg = 0;
return tmp;
case REG_K10_K13_INT_FACTOR_FLAGS:
/* Interrupt factor flags (K10-K13) */
tmp = interrupts[INT_K10_K13_SLOT].factor_flag_reg;
interrupts[INT_K10_K13_SLOT].factor_flag_reg = 0;
return tmp;
case REG_CLOCK_INT_MASKS:
/* Clock timer interrupt masks */
return interrupts[INT_CLOCK_TIMER_SLOT].mask_reg;
case REG_SW_INT_MASKS:
/* Stopwatch interrupt masks */
return interrupts[INT_STOPWATCH_SLOT].mask_reg & 0x3;
case REG_PROG_INT_MASKS:
/* Prog timer interrupt masks */
return interrupts[INT_PROG_TIMER_SLOT].mask_reg & 0x1;
case REG_SERIAL_INT_MASKS:
/* Serial interface interrupt masks */
return interrupts[INT_SERIAL_SLOT].mask_reg & 0x1;
case REG_K00_K03_INT_MASKS:
/* Input (K00-K03) interrupt masks */
return interrupts[INT_K00_K03_SLOT].mask_reg;
case REG_K10_K13_INT_MASKS:
/* Input (K10-K13) interrupt masks */
return interrupts[INT_K10_K13_SLOT].mask_reg;
case REG_PROG_TIMER_DATA_L:
/* Prog timer data (low) */
return prog_timer_data & 0xF;
case REG_PROG_TIMER_DATA_H:
/* Prog timer data (high) */
return (prog_timer_data >> 4) & 0xF;
case REG_PROG_TIMER_RELOAD_DATA_L:
/* Prog timer reload data (low) */
return prog_timer_rld & 0xF;
case REG_PROG_TIMER_RELOAD_DATA_H:
/* Prog timer reload data (high) */
return (prog_timer_rld >> 4) & 0xF;
case REG_K00_K03_INPUT_PORT:
/* Input port (K00-K03) */
return inputs[0].states;
case REG_K10_K13_INPUT_PORT:
/* Input port (K10-K13) */
return inputs[1].states;
case REG_K40_K43_BZ_OUTPUT_PORT:
/* Output port (R40-R43) */
//return io_memory[n - MEM_IO_ADDR_OFS];
return 0xf;
case REG_CPU_OSC3_CTRL:
/* CPU/OSC3 clocks switch, CPU voltage switch */
//return io_memory[n - MEM_IO_ADDR_OFS];
return 0;
case REG_LCD_CTRL:
/* LCD control */
//return io_memory[n - MEM_IO_ADDR_OFS];
return 0x8;
case REG_LCD_CONTRAST:
/* LCD contrast */
break;
case REG_SVD_CTRL:
/* SVD */
//return io_memory[n - MEM_IO_ADDR_OFS] & 0x7; // Voltage always OK
return 0;
case REG_BUZZER_CTRL1:
/* Buzzer config 1 */
//return memory[n - MEM_IO_ADDR_OFS];
return 0;
case REG_BUZZER_CTRL2:
/* Buzzer config 2 */
//return io_memory[n - MEM_IO_ADDR_OFS] & 0x3; // Buzzer ready
return 0;
case REG_CLK_WD_TIMER_CTRL:
/* Clock/Watchdog timer reset */
break;
case REG_SW_TIMER_CTRL:
/* Stopwatch stop/run/reset */
break;
case REG_PROG_TIMER_CTRL:
/* Prog timer stop/run/reset */
return !!prog_timer_enabled;
case REG_PROG_TIMER_CLK_SEL:
/* Prog timer clock selection */
break;
default:
break;
//g_hal->log(LOG_ERROR, "Read from unimplemented I/O 0x%03X - PC = 0x%04X\n", n, pc);
}
return 0;
}
static void set_io(u12_t n, u4_t v)
{
switch (n) {
case REG_CLOCK_INT_MASKS:
/* Clock timer interrupt masks */
/* Assume 1Hz timer INT enabled (0x8) */
interrupts[INT_CLOCK_TIMER_SLOT].mask_reg = v;
break;
case REG_SW_INT_MASKS:
/* Stopwatch interrupt masks */
/* Assume all INT disabled */
interrupts[INT_STOPWATCH_SLOT].mask_reg = v;
break;
case REG_PROG_INT_MASKS:
/* Prog timer interrupt masks */
/* Assume Prog timer INT enabled (0x1) */
interrupts[INT_PROG_TIMER_SLOT].mask_reg = v;
break;
case REG_SERIAL_INT_MASKS:
/* Serial interface interrupt masks */
/* Assume all INT disabled */
interrupts[INT_K10_K13_SLOT].mask_reg = v;
break;
case REG_K00_K03_INT_MASKS:
/* Input (K00-K03) interrupt masks */
/* Assume all INT disabled */
interrupts[INT_SERIAL_SLOT].mask_reg = v;
break;
case REG_K10_K13_INT_MASKS:
/* Input (K10-K13) interrupt masks */
/* Assume all INT disabled */
interrupts[INT_K10_K13_SLOT].mask_reg = v;
break;
case REG_PROG_TIMER_RELOAD_DATA_L:
/* Prog timer reload data (low) */
prog_timer_rld = v | (prog_timer_rld & 0xF0);
break;
case REG_PROG_TIMER_RELOAD_DATA_H:
/* Prog timer reload data (high) */
prog_timer_rld = (prog_timer_rld & 0xF) | (v << 4);
break;
case REG_K00_K03_INPUT_PORT:
/* Input port (K00-K03) */
/* Write not allowed */
break;
case REG_K40_K43_BZ_OUTPUT_PORT:
/* Output port (R40-R43) */
//g_hal->log(LOG_INFO, "Output/Buzzer: 0x%X\n", v);
hw_enable_buzzer(!(v & 0x8));
break;
case REG_CPU_OSC3_CTRL:
/* CPU/OSC3 clocks switch, CPU voltage switch */
/* Assume 32,768 OSC1 selected, OSC3 off, battery >= 3,1V (0x1) */
break;
case REG_LCD_CTRL:
/* LCD control */
break;
case REG_LCD_CONTRAST:
/* LCD contrast */
/* Assume medium contrast (0x8) */
break;
case REG_SVD_CTRL:
/* SVD */
/* Assume battery voltage always OK (0x6) */
break;
case REG_BUZZER_CTRL1:
/* Buzzer config 1 */
hw_set_buzzer_freq(v & 0x7);
break;
case REG_BUZZER_CTRL2:
/* Buzzer config 2 */
break;
case REG_CLK_WD_TIMER_CTRL:
/* Clock/Watchdog timer reset */
/* Ignore watchdog */
break;
case REG_SW_TIMER_CTRL:
/* Stopwatch stop/run/reset */
break;
case REG_PROG_TIMER_CTRL:
/* Prog timer stop/run/reset */
if (v & 0x2) {
prog_timer_data = prog_timer_rld;
}
if ((v & 0x1) && !prog_timer_enabled) {
prog_timer_timestamp = tick_counter;
}
prog_timer_enabled = v & 0x1;
break;
case REG_PROG_TIMER_CLK_SEL:
/* Prog timer clock selection */
/* Assume 256Hz, output disabled */
break;
default:
break;
//g_hal->log(LOG_ERROR, "Write 0x%X to unimplemented I/O 0x%03X - PC = 0x%04X\n", v, n, pc);
}
}
static void set_lcd(u12_t n, u4_t v)
{
u8_t i;
u8_t seg, com0;
seg = ((n & 0x7F) >> 1);
com0 = (((n & 0x80) >> 7) * 8 + (n & 0x1) * 4);
for (i = 0; i < 4; i++) {
hw_set_lcd_pin(seg, com0 + i, (v >> i) & 0x1);
}
}
/*
#define MEMORY_SIZE 1280 // 4096 x 4 bits (640 x 4 bits of RAM)
#define MEM_RAM_ADDR 0x000
#define MEM_RAM_SIZE 0x280 // 640
#define MEM_DISPLAY1_ADDR 0xE00 // 3584 0x280
#define MEM_DISPLAY1_ADDR_OFS 0xB80
#define MEM_DISPLAY1_SIZE 0x050 // 80
#define MEM_DISPLAY2_ADDR 0xE80 // 3712 0x2D0
#define MEM_DISPLAY2_ADDR_OFS 0xBB0
#define MEM_DISPLAY2_SIZE 0x050 // 80
#define MEM_IO_ADDR 0xF00 // 3840 0x320
#define MEM_IO_ADDR_OFS 0xBE0
#define MEM_IO_SIZE 0x080 // 128 0x3a0
*/
/*
u8_t cpu_get_max_number() {
return maxNumber;
}
*/
static u4_t get_memory(u12_t n)
{
u4_t res = 0;
if (n < MEM_RAM_SIZE) {
/* RAM */
//g_hal->log(LOG_MEMORY, "RAM - ");
//if (n > max_memory_addr_access) max_memory_addr_access = n;
if ((n & 0x1)==0) {
res = memory[n>>1] >> 4;
} else {
res = memory[n>>1] & 0b00001111;
}
} else if (n >= MEM_DISPLAY1_ADDR && n < (MEM_DISPLAY1_ADDR + MEM_DISPLAY1_SIZE)) {
/* Display Memory 1 */
//g_hal->log(LOG_MEMORY, "Display Memory 1 - ");
//res = memory[n - MEM_DISPLAY1_ADDR_OFS];
res = 0;
} else if (n >= MEM_DISPLAY2_ADDR && n < (MEM_DISPLAY2_ADDR + MEM_DISPLAY2_SIZE)) {
/* Display Memory 2 */
//g_hal->log(LOG_MEMORY, "Display Memory 2 - ");
//res = memory[n - MEM_DISPLAY2_ADDR_OFS];
res = 0;
} else if (n >= MEM_IO_ADDR && n < (MEM_IO_ADDR + MEM_IO_SIZE)) {
/* I/O Memory */
//g_hal->log(LOG_MEMORY, "I/O - ");
res = get_io(n);
} else {
//g_hal->log(LOG_ERROR, "Read from invalid memory address 0x%03X - PC = 0x%04X\n", n, pc);
return 0;
}
//g_hal->log(LOG_MEMORY, "Read 0x%X - Address 0x%03X - PC = 0x%04X\n", res, n, pc);
return res;
}
static void set_memory(u12_t n, u4_t v)
{
if (n < MEM_RAM_SIZE) {
/* RAM */
//g_hal->log(LOG_MEMORY, "RAM - ");
if ((n & 0x1)==0) {
memory[n>>1] = (memory[n>>1] & 0x0F) | (v << 4);
} else {
memory[n>>1] = (memory[n>>1] & 0xF0) | v;
}
//memory[n] = v;
} else if (n >= MEM_DISPLAY1_ADDR && n < (MEM_DISPLAY1_ADDR + MEM_DISPLAY1_SIZE)) {
/* Display Memory 1 */
set_lcd(n, v);
//memory[n - MEM_DISPLAY1_ADDR_OFS] = v;
//g_hal->log(LOG_MEMORY, "Display Memory 1 - ");
} else if (n >= MEM_DISPLAY2_ADDR && n < (MEM_DISPLAY2_ADDR + MEM_DISPLAY2_SIZE)) {
/* Display Memory 2 */
set_lcd(n, v);
//memory[n - MEM_DISPLAY2_ADDR_OFS] = v;
//g_hal->log(LOG_MEMORY, "Display Memory 2 - ");
} else if (n >= MEM_IO_ADDR && n < (MEM_IO_ADDR + MEM_IO_SIZE)) {
/* I/O Memory */
set_io(n, v);
//g_hal->log(LOG_MEMORY, "I/O - ");
} else {
//g_hal->log(LOG_ERROR, "Write 0x%X to invalid memory address 0x%03X - PC = 0x%04X\n", v, n, pc);
return;
}
//g_hal->log(LOG_MEMORY, "Write 0x%X - Address 0x%03X - PC = 0x%04X\n", v, n, pc);
}
/*
void cpu_refresh_hw(void)
{
static const struct range {
u12_t addr;
u12_t size;
} refresh_locs[] = {
{ MEM_DISPLAY1_ADDR, MEM_DISPLAY1_SIZE }, // Display Memory 1
{ MEM_DISPLAY2_ADDR, MEM_DISPLAY2_SIZE }, // Display Memory 2
{ REG_BUZZER_CTRL1, 1 }, // Buzzer frequency
{ REG_K40_K43_BZ_OUTPUT_PORT, 1 }, // Buzzer enabled
{ 0, 0 }, // end of list
};
for (int i = 0; refresh_locs[i].size != 0; i++) {
for (u12_t n = refresh_locs[i].addr; n < (refresh_locs[i].addr + refresh_locs[i].size); n++) {
set_memory(n, memory[n]);
}
}
}*/
static u4_t get_rq(u12_t rq)
{
switch (rq & 0x3) {
case 0x0: return a;
case 0x1: return b;
case 0x2: return M(x);
case 0x3: return M(y);
}
return 0;
}
static void set_rq(u12_t rq, u4_t v)
{
switch (rq & 0x3) {
case 0x0: a = v; break;
case 0x1: b = v; break;
case 0x2: SET_M(x, v); break;
case 0x3: SET_M(y, v); break;
}
}
/* Instructions */
static void op_pset_cb(u8_t arg0, u8_t arg1)
{
np = arg0;
}
static void op_jp_cb(u8_t arg0, u8_t arg1)
{
next_pc = arg0 | (np << 8);
}
static void op_jp_c_cb(u8_t arg0, u8_t arg1)
{
if (flags & FLAG_C) {
next_pc = arg0 | (np << 8);
}
}
static void op_jp_nc_cb(u8_t arg0, u8_t arg1)
{
if (!(flags & FLAG_C)) {
next_pc = arg0 | (np << 8);
}
}
static void op_jp_z_cb(u8_t arg0, u8_t arg1)
{
if (flags & FLAG_Z) {
next_pc = arg0 | (np << 8);
}
}
static void op_jp_nz_cb(u8_t arg0, u8_t arg1)
{
if (!(flags & FLAG_Z)) {
next_pc = arg0 | (np << 8);
}
}
static void op_jpba_cb(u8_t arg0, u8_t arg1)
{
next_pc = a | (b << 4) | (np << 8);
}
static void op_call_cb(u8_t arg0, u8_t arg1)
{
pc = (pc + 1) & 0x1FFF; // This does not actually change the PC register
SET_M(sp - 1, PCP);
SET_M(sp - 2, PCSH);
SET_M(sp - 3, PCSL);
sp = (sp - 3) & 0xFF;
next_pc = TO_PC(PCB, NPP, arg0);
call_depth++;
}
static void op_calz_cb(u8_t arg0, u8_t arg1)
{
pc = (pc + 1) & 0x1FFF; // This does not actually change the PC register
SET_M(sp - 1, PCP);
SET_M(sp - 2, PCSH);
SET_M(sp - 3, PCSL);
sp = (sp - 3) & 0xFF;
next_pc = TO_PC(PCB, 0, arg0);
call_depth++;
}
static void op_ret_cb(u8_t arg0, u8_t arg1)
{
next_pc = M(sp) | (M(sp + 1) << 4) | (M(sp + 2) << 8) | (PCB << 12);
sp = (sp + 3) & 0xFF;
call_depth--;
}
static void op_rets_cb(u8_t arg0, u8_t arg1)
{
next_pc = M(sp) | (M(sp + 1) << 4) | (M(sp + 2) << 8) | (PCB << 12);
sp = (sp + 3) & 0xFF;
next_pc = (pc + 1) & 0x1FFF;
call_depth--;
}
static void op_retd_cb(u8_t arg0, u8_t arg1)
{
next_pc = M(sp) | (M(sp + 1) << 4) | (M(sp + 2) << 8) | (PCB << 12);
sp = (sp + 3) & 0xFF;
SET_M(x, arg0 & 0xF);
SET_M(x + 1, (arg0 >> 4) & 0xF);
x = ((x + 2) & 0xFF) | (XP << 8);
call_depth--;
}
static void op_nop5_cb(u8_t arg0, u8_t arg1)
{
}
static void op_nop7_cb(u8_t arg0, u8_t arg1)
{
}
static void op_halt_cb(u8_t arg0, u8_t arg1)
{
g_hal->halt();
}
static void op_inc_x_cb(u8_t arg0, u8_t arg1)
{
x = ((x + 1) & 0xFF) | (XP << 8);
}
static void op_inc_y_cb(u8_t arg0, u8_t arg1)
{
y = ((y + 1) & 0xFF) | (YP << 8);
}
static void op_ld_x_cb(u8_t arg0, u8_t arg1)
{
x = arg0 | (XP << 8);
}
static void op_ld_y_cb(u8_t arg0, u8_t arg1)
{
y = arg0 | (YP << 8);
}
static void op_ld_xp_r_cb(u8_t arg0, u8_t arg1)
{
x = XHL | (RQ(arg0) << 8);
}
static void op_ld_xh_r_cb(u8_t arg0, u8_t arg1)
{
x = XL1 | (RQ(arg0) << 4) | (XP << 8);
}
static void op_ld_xl_r_cb(u8_t arg0, u8_t arg1)
{
x = RQ(arg0) | (XH1 << 4) | (XP << 8);
}
static void op_ld_yp_r_cb(u8_t arg0, u8_t arg1)
{
y = YHL | (RQ(arg0) << 8);
}
static void op_ld_yh_r_cb(u8_t arg0, u8_t arg1)
{
y = YL1 | (RQ(arg0) << 4) | (YP << 8);
}
static void op_ld_yl_r_cb(u8_t arg0, u8_t arg1)
{
y = RQ(arg0) | (YH1 << 4) | (YP << 8);
}
static void op_ld_r_xp_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, XP);
}
static void op_ld_r_xh_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, XH1);
}
static void op_ld_r_xl_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, XL1);
}
static void op_ld_r_yp_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, YP);
}
static void op_ld_r_yh_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, YH1);
}
static void op_ld_r_yl_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, YL1);
}
static void op_adc_xh_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = XH1 + arg0 + C;
x = XL1 | ((tmp & 0xF) << 4)| (XP << 8);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!(tmp & 0xF)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_adc_xl_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = XL1 + arg0 + C;
x = (tmp & 0xF) | (XH1 << 4) | (XP << 8);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!(tmp & 0xF)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_adc_yh_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = YH1 + arg0 + C;
y = YL1 | ((tmp & 0xF) << 4)| (YP << 8);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!(tmp & 0xF)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_adc_yl_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = YL1 + arg0 + C;
y = (tmp & 0xF) | (YH1 << 4) | (YP << 8);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!(tmp & 0xF)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_xh_cb(u8_t arg0, u8_t arg1)
{
if (XH1 < arg0) { SET_C(); } else { CLEAR_C(); }
if (XH1 == arg0) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_xl_cb(u8_t arg0, u8_t arg1)
{
if (XL1 < arg0) { SET_C(); } else { CLEAR_C(); }
if (XL1 == arg0) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_yh_cb(u8_t arg0, u8_t arg1)
{
if (YH1 < arg0) { SET_C(); } else { CLEAR_C(); }
if (YH1 == arg0) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_yl_cb(u8_t arg0, u8_t arg1)
{
if (YL1 < arg0) { SET_C(); } else { CLEAR_C(); }
if (YL1 == arg0) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_ld_r_i_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, arg1);
}
static void op_ld_r_q_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg1));
}
static void op_ld_a_mn_cb(u8_t arg0, u8_t arg1)
{
a = M(arg0);
}
static void op_ld_b_mn_cb(u8_t arg0, u8_t arg1)
{
b = M(arg0);
}
static void op_ld_mn_a_cb(u8_t arg0, u8_t arg1)
{
SET_M(arg0, a);
}
static void op_ld_mn_b_cb(u8_t arg0, u8_t arg1)
{
SET_M(arg0, b);
}
static void op_ldpx_mx_cb(u8_t arg0, u8_t arg1)
{
SET_M(x, arg0);
x = ((x + 1) & 0xFF) | (XP << 8);
}
static void op_ldpx_r_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg1));
x = ((x + 1) & 0xFF) | (XP << 8);
}
static void op_ldpy_my_cb(u8_t arg0, u8_t arg1)
{
SET_M(y, arg0);
y = ((y + 1) & 0xFF) | (YP << 8);
}
static void op_ldpy_r_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg1));
y = ((y + 1) & 0xFF) | (YP << 8);
}
static void op_lbpx_cb(u8_t arg0, u8_t arg1)
{
SET_M(x, arg0 & 0xF);
SET_M(x + 1, (arg0 >> 4) & 0xF);
x = ((x + 2) & 0xFF) | (XP << 8);
}
static void op_set_cb(u8_t arg0, u8_t arg1)
{
flags |= arg0;
}
static void op_rst_cb(u8_t arg0, u8_t arg1)
{
flags &= arg0;
}
static void op_scf_cb(u8_t arg0, u8_t arg1)
{
SET_C();
}
static void op_rcf_cb(u8_t arg0, u8_t arg1)
{
CLEAR_C();
}
static void op_szf_cb(u8_t arg0, u8_t arg1)
{
SET_Z();
}
static void op_rzf_cb(u8_t arg0, u8_t arg1)
{
CLEAR_Z();
}
static void op_sdf_cb(u8_t arg0, u8_t arg1)
{
SET_D();
}
static void op_rdf_cb(u8_t arg0, u8_t arg1)
{
CLEAR_D();
}
static void op_ei_cb(u8_t arg0, u8_t arg1)
{
SET_I();
}
static void op_di_cb(u8_t arg0, u8_t arg1)
{
CLEAR_I();
}
static void op_inc_sp_cb(u8_t arg0, u8_t arg1)
{
sp = (sp + 1) & 0xFF;
}
static void op_dec_sp_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
}
static void op_push_r_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, RQ(arg0));
}
static void op_push_xp_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, XP);
}
static void op_push_xh_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, XH1);
}
static void op_push_xl_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, XL1);
}
static void op_push_yp_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, YP);
}
static void op_push_yh_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, YH1);
}
static void op_push_yl_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, YL1);
}
static void op_push_f_cb(u8_t arg0, u8_t arg1)
{
sp = (sp - 1) & 0xFF;
SET_M(sp, flags);
}
static void op_pop_r_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, M(sp));
sp = (sp + 1) & 0xFF;
}
static void op_pop_xp_cb(u8_t arg0, u8_t arg1)
{
x = XL1 | (XH1 << 4)| (M(sp) << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_xh_cb(u8_t arg0, u8_t arg1)
{
x = XL1 | (M(sp) << 4)| (XP << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_xl_cb(u8_t arg0, u8_t arg1)
{
x = M(sp) | (XH1 << 4)| (XP << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_yp_cb(u8_t arg0, u8_t arg1)
{
y = YL1 | (YH1 << 4)| (M(sp) << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_yh_cb(u8_t arg0, u8_t arg1)
{
y = YL1 | (M(sp) << 4)| (YP << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_yl_cb(u8_t arg0, u8_t arg1)
{
y = M(sp) | (YH1 << 4)| (YP << 8);
sp = (sp + 1) & 0xFF;
}
static void op_pop_f_cb(u8_t arg0, u8_t arg1)
{
flags = M(sp);
sp = (sp + 1) & 0xFF;
}
static void op_ld_sph_r_cb(u8_t arg0, u8_t arg1)
{
sp = SPL1 | (RQ(arg0) << 4);
}
static void op_ld_spl_r_cb(u8_t arg0, u8_t arg1)
{
sp = RQ(arg0) | (SPH1 << 4);
}
static void op_ld_r_sph_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, SPH1);
}
static void op_ld_r_spl_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, SPL1);
}
static void op_add_r_i_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) + arg1;
if (D) {
if (tmp >= 10) {
SET_RQ(arg0, (tmp - 10) & 0xF);
SET_C();
} else {
SET_RQ(arg0, tmp);
CLEAR_C();
}
} else {
SET_RQ(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_add_r_q_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) + RQ(arg1);
if (D) {
if (tmp >= 10) {
SET_RQ(arg0, (tmp - 10) & 0xF);
SET_C();
} else {
SET_RQ(arg0, tmp);
CLEAR_C();
}
} else {
SET_RQ(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_adc_r_i_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) + arg1 + C;
if (D) {
if (tmp >= 10) {
SET_RQ(arg0, (tmp - 10) & 0xF);
SET_C();
} else {
SET_RQ(arg0, tmp);
CLEAR_C();
}
} else {
SET_RQ(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_adc_r_q_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) + RQ(arg1) + C;
if (D) {
if (tmp >= 10) {
SET_RQ(arg0, (tmp - 10) & 0xF);
SET_C();
} else {
SET_RQ(arg0, tmp);
CLEAR_C();
}
} else {
SET_RQ(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_sub_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) - RQ(arg1);
if (D) {
if (tmp >> 4) {
SET_RQ(arg0, (tmp - 6) & 0xF);
} else {
SET_RQ(arg0, tmp);
}
} else {
SET_RQ(arg0, tmp & 0xF);
}
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_sbc_r_i_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) - arg1 - C;
if (D) {
if (tmp >> 4) {
SET_RQ(arg0, (tmp - 6) & 0xF);
} else {
SET_RQ(arg0, tmp);
}
} else {
SET_RQ(arg0, tmp & 0xF);
}
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_sbc_r_q_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = RQ(arg0) - RQ(arg1) - C;
if (D) {
if (tmp >> 4) {
SET_RQ(arg0, (tmp - 6) & 0xF);
} else {
SET_RQ(arg0, tmp);
}
} else {
SET_RQ(arg0, tmp & 0xF);
}
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_and_r_i_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) & arg1);
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_and_r_q_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) & RQ(arg1));
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_or_r_i_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) | arg1);
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_or_r_q_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) | RQ(arg1));
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_xor_r_i_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) ^ arg1);
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_xor_r_q_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, RQ(arg0) ^ RQ(arg1));
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_r_i_cb(u8_t arg0, u8_t arg1)
{
if (RQ(arg0) < arg1) { SET_C(); } else { CLEAR_C(); }
if (RQ(arg0) == arg1) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_cp_r_q_cb(u8_t arg0, u8_t arg1)
{
if (RQ(arg0) < RQ(arg1)) { SET_C(); } else { CLEAR_C(); }
if (RQ(arg0) == RQ(arg1)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_fan_r_i_cb(u8_t arg0, u8_t arg1)
{
if (!(RQ(arg0) & arg1)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_fan_r_q_cb(u8_t arg0, u8_t arg1)
{
if (!(RQ(arg0) & RQ(arg1))) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_rlc_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = (RQ(arg0) << 1) | C;
if (RQ(arg0) & 0x8) { SET_C(); } else { CLEAR_C(); }
SET_RQ(arg0, tmp & 0xF);
/* No need to set Z (issue in DS) */
}
static void op_rrc_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = (RQ(arg0) >> 1) | (C << 3);
if (RQ(arg0) & 0x1) { SET_C(); } else { CLEAR_C(); }
SET_RQ(arg0, tmp & 0xF);
/* No need to set Z (issue in DS) */
}
static void op_inc_mn_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(arg0) + 1;
SET_M(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!M(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_dec_mn_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(arg0) - 1;
SET_M(arg0, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!M(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
static void op_acpx_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(x) + RQ(arg0) + C;
if (D) {
if (tmp >= 10) {
SET_M(x, (tmp - 10) & 0xF);
SET_C();
} else {
SET_M(x, tmp);
CLEAR_C();
}
} else {
SET_M(x, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!M(x)) { SET_Z(); } else { CLEAR_Z(); }
x = ((x + 1) & 0xFF) | (XP << 8);
}
static void op_acpy_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(y) + RQ(arg0) + C;
if (D) {
if (tmp >= 10) {
SET_M(y, (tmp - 10) & 0xF);
SET_C();
} else {
SET_M(y, tmp);
CLEAR_C();
}
} else {
SET_M(y, tmp & 0xF);
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
}
if (!M(y)) { SET_Z(); } else { CLEAR_Z(); }
y = ((y + 1) & 0xFF) | (YP << 8);
}
static void op_scpx_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(x) - RQ(arg0) - C;
if (D) {
if (tmp >> 4) {
SET_M(x, (tmp - 6) & 0xF);
} else {
SET_M(x, tmp);
}
} else {
SET_M(x, tmp & 0xF);
}
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!M(x)) { SET_Z(); } else { CLEAR_Z(); }
x = ((x + 1) & 0xFF) | (XP << 8);
}
static void op_scpy_cb(u8_t arg0, u8_t arg1)
{
u8_t tmp;
tmp = M(y) - RQ(arg0) - C;
if (D) {
if (tmp >> 4) {
SET_M(y, (tmp - 6) & 0xF);
} else {
SET_M(y, tmp);
}
} else {
SET_M(y, tmp & 0xF);
}
if (tmp >> 4) { SET_C(); } else { CLEAR_C(); }
if (!M(y)) { SET_Z(); } else { CLEAR_Z(); }
y = ((y + 1) & 0xFF) | (YP << 8);
}
static void op_not_cb(u8_t arg0, u8_t arg1)
{
SET_RQ(arg0, ~RQ(arg0) & 0xF);
if (!RQ(arg0)) { SET_Z(); } else { CLEAR_Z(); }
}
/* The E0C6S46 supported instructions */
static const op_t0 ops0[] PROGMEM = {
{0xE40, MASK_7B , 5 }, // PSET
{0x000, MASK_4B , 5 }, // JP
{0x200, MASK_4B , 5 }, // JP_C
{0x300, MASK_4B , 5 }, // JP_NC
{0x600, MASK_4B , 5 }, // JP_Z
{0x700, MASK_4B , 5 }, // JP_NZ
{0xFE8, MASK_12B , 5 }, // JPBA
{0x400, MASK_4B , 7 }, // CALL
{0x500, MASK_4B , 7 }, // CALZ
{0xFDF, MASK_12B , 7 }, // RET
{0xFDE, MASK_12B , 12}, // RETS
{0x100, MASK_4B , 12}, // RETD
{0xFFB, MASK_12B , 5 }, // NOP5
{0xFFF, MASK_12B , 7 }, // NOP7
{0xFF8, MASK_12B , 5 }, // HALT
{0xEE0, MASK_12B , 5 }, // INC_X
{0xEF0, MASK_12B , 5 }, // INC_Y
{0xB00, MASK_4B , 5 }, // LD_X
{0x800, MASK_4B , 5 }, // LD_Y
{0xE80, MASK_10B , 5 }, // LD_XP_R
{0xE84, MASK_10B , 5 }, // LD_XH_R
{0xE88, MASK_10B , 5 }, // LD_XL_R
{0xE90, MASK_10B , 5 }, // LD_YP_R
{0xE94, MASK_10B , 5 }, // LD_YH_R
{0xE98, MASK_10B , 5 }, // LD_YL_R
{0xEA0, MASK_10B , 5 }, // LD_R_XP
{0xEA4, MASK_10B , 5 }, // LD_R_XH
{0xEA8, MASK_10B , 5 }, // LD_R_XL
{0xEB0, MASK_10B , 5 }, // LD_R_YP
{0xEB4, MASK_10B , 5 }, // LD_R_YH
{0xEB8, MASK_10B , 5 }, // LD_R_YL
{0xA00, MASK_8B , 7 }, // ADC_XH
{0xA10, MASK_8B , 7 }, // ADC_XL
{0xA20, MASK_8B , 7 }, // ADC_YH
{0xA30, MASK_8B , 7 }, // ADC_YL
{0xA40, MASK_8B , 7 }, // CP_XH
{0xA50, MASK_8B , 7 }, // CP_XL
{0xA60, MASK_8B , 7 }, // CP_YH
{0xA70, MASK_8B , 7 }, // CP_YL
{0xFA0, MASK_8B , 5 }, // LD_A_MN
{0xFB0, MASK_8B , 5 }, // LD_B_MN
{0xF80, MASK_8B , 5 }, // LD_MN_A
{0xF90, MASK_8B , 5 }, // LD_MN_B
{0xE60, MASK_8B , 5 }, // LDPX_MX
{0xE70, MASK_8B , 5 }, // LDPY_MY
{0x900, MASK_4B , 5 }, // LBPX
{0xF40, MASK_8B , 7 }, // SET
{0xF50, MASK_8B , 7 }, // RST
{0xF41, MASK_12B , 7 }, // SCF
{0xF5E, MASK_12B , 7 }, // RCF
{0xF42, MASK_12B , 7 }, // SZF
{0xF5D, MASK_12B , 7 }, // RZF
{0xF44, MASK_12B , 7 }, // SDF
{0xF5B, MASK_12B , 7 }, // RDF
{0xF48, MASK_12B , 7 }, // EI
{0xF57, MASK_12B , 7 }, // DI
{0xFDB, MASK_12B , 5 }, // INC_SP
{0xFCB, MASK_12B , 5 }, // DEC_SP
{0xFC0, MASK_10B , 5 }, // PUSH_R
{0xFC4, MASK_12B , 5 }, // PUSH_XP
{0xFC5, MASK_12B , 5 }, // PUSH_XH
{0xFC6, MASK_12B , 5 }, // PUSH_XL
{0xFC7, MASK_12B , 5 }, // PUSH_YP
{0xFC8, MASK_12B , 5 }, // PUSH_YH
{0xFC9, MASK_12B , 5 }, // PUSH_YL
{0xFCA, MASK_12B , 5 }, // PUSH_F
{0xFD0, MASK_10B , 5 }, // POP_R
{0xFD4, MASK_12B , 5 }, // POP_XP
{0xFD5, MASK_12B , 5 }, // POP_XH
{0xFD6, MASK_12B , 5 }, // POP_XL
{0xFD7, MASK_12B , 5 }, // POP_YP
{0xFD8, MASK_12B , 5 }, // POP_YH
{0xFD9, MASK_12B , 5 }, // POP_YL
{0xFDA, MASK_12B , 5 }, // POP_F
{0xFE0, MASK_10B , 5 }, // LD_SPH_R
{0xFF0, MASK_10B , 5 }, // LD_SPL_R
{0xFE4, MASK_10B , 5 }, // LD_R_SPH
{0xFF4, MASK_10B , 5 }, // LD_R_SPL
{0xC00, MASK_6B , 7 }, // ADD_R_I
{0xC40, MASK_6B , 7 }, // ADC_R_I
{0xB40, MASK_6B , 7 }, // SBC_R_I
{0xC80, MASK_6B , 7 }, // AND_R_I
{0xCC0, MASK_6B , 7 }, // OR_R_I
{0xD00, MASK_6B , 7 }, // XOR_R_I
{0xDC0, MASK_6B , 7 }, // CP_R_I
{0xD80, MASK_6B , 7 }, // FAN_R_I
{0xE00, MASK_6B , 5 }, // LD_R_I
{0xA80, MASK_8B , 7 }, // ADD_R_Q
{0xA90, MASK_8B , 7 }, // ADC_R_Q
{0xAA0, MASK_8B , 7 }, // SUB
{0xAB0, MASK_8B , 7 }, // SBC_R_Q
{0xAC0, MASK_8B , 7 }, // AND_R_Q
{0xAD0, MASK_8B , 7 }, // OR_R_Q
{0xAE0, MASK_8B , 7 }, // XOR_R_Q
{0xEC0, MASK_8B , 5 }, // LD_R_Q
{0xEE0, MASK_8B , 5 }, // LDPX_R
{0xEF0, MASK_8B , 5 }, // LDPY_R
{0xF00, MASK_8B , 7 }, // CP_R_Q
{0xF10, MASK_8B , 7 }, // FAN_R_Q
{0xAF0, MASK_8B , 7 }, // RLC
{0xE8C, MASK_10B , 5 }, // RRC
{0xF60, MASK_8B , 7 }, // INC_MN
{0xF70, MASK_8B , 7 }, // DEC_MN
{0xF28, MASK_10B , 7 }, // ACPX
{0xF2C, MASK_10B , 7 }, // ACPY
{0xF38, MASK_10B , 7 }, // SCPX
{0xF3C, MASK_10B , 7 }, // SCPY
{0xD0F, 0xFCF , 7 }, // NOT
{NULL, 0, 0, 0, NULL},
};
/* The E0C6S46 supported instructions */
static const op_t1 ops1[] PROGMEM = {
{&op_pset_cb}, // PSET
{&op_jp_cb}, // JP
{&op_jp_c_cb}, // JP_C
{&op_jp_nc_cb}, // JP_NC
{&op_jp_z_cb}, // JP_Z
{&op_jp_nz_cb}, // JP_NZ
{&op_jpba_cb}, // JPBA
{&op_call_cb}, // CALL
{&op_calz_cb}, // CALZ
{&op_ret_cb}, // RET
{&op_rets_cb}, // RETS
{&op_retd_cb}, // RETD
{&op_nop5_cb}, // NOP5
{&op_nop7_cb}, // NOP7
{&op_halt_cb}, // HALT
{&op_inc_x_cb}, // INC_X
{&op_inc_y_cb}, // INC_Y
{&op_ld_x_cb}, // LD_X
{&op_ld_y_cb}, // LD_Y
{&op_ld_xp_r_cb}, // LD_XP_R
{&op_ld_xh_r_cb}, // LD_XH_R
{&op_ld_xl_r_cb}, // LD_XL_R
{&op_ld_yp_r_cb}, // LD_YP_R
{&op_ld_yh_r_cb}, // LD_YH_R
{&op_ld_yl_r_cb}, // LD_YL_R
{&op_ld_r_xp_cb}, // LD_R_XP
{&op_ld_r_xh_cb}, // LD_R_XH
{&op_ld_r_xl_cb}, // LD_R_XL
{&op_ld_r_yp_cb}, // LD_R_YP
{&op_ld_r_yh_cb}, // LD_R_YH
{&op_ld_r_yl_cb}, // LD_R_YL
{&op_adc_xh_cb}, // ADC_XH
{&op_adc_xl_cb}, // ADC_XL
{&op_adc_yh_cb}, // ADC_YH
{&op_adc_yl_cb}, // ADC_YL
{&op_cp_xh_cb}, // CP_XH
{&op_cp_xl_cb}, // CP_XL
{&op_cp_yh_cb}, // CP_YH
{&op_cp_yl_cb}, // CP_YL
{&op_ld_a_mn_cb}, // LD_A_MN
{&op_ld_b_mn_cb}, // LD_B_MN
{&op_ld_mn_a_cb}, // LD_MN_A
{&op_ld_mn_b_cb}, // LD_MN_B
{&op_ldpx_mx_cb}, // LDPX_MX
{&op_ldpy_my_cb}, // LDPY_MY
{&op_lbpx_cb}, // LBPX
{&op_set_cb}, // SET
{&op_rst_cb}, // RST
{&op_scf_cb}, // SCF
{&op_rcf_cb}, // RCF
{&op_szf_cb}, // SZF
{&op_rzf_cb}, // RZF
{&op_sdf_cb}, // SDF
{&op_rdf_cb}, // RDF
{&op_ei_cb}, // EI
{&op_di_cb}, // DI
{&op_inc_sp_cb}, // INC_SP
{&op_dec_sp_cb}, // DEC_SP
{&op_push_r_cb}, // PUSH_R
{&op_push_xp_cb}, // PUSH_XP
{&op_push_xh_cb}, // PUSH_XH
{&op_push_xl_cb}, // PUSH_XL
{&op_push_yp_cb}, // PUSH_YP
{&op_push_yh_cb}, // PUSH_YH
{&op_push_yl_cb}, // PUSH_YL
{&op_push_f_cb}, // PUSH_F
{&op_pop_r_cb}, // POP_R
{&op_pop_xp_cb}, // POP_XP
{&op_pop_xh_cb}, // POP_XH
{&op_pop_xl_cb}, // POP_XL
{&op_pop_yp_cb}, // POP_YP
{&op_pop_yh_cb}, // POP_YH
{&op_pop_yl_cb}, // POP_YL
{&op_pop_f_cb}, // POP_F
{&op_ld_sph_r_cb}, // LD_SPH_R
{&op_ld_spl_r_cb}, // LD_SPL_R
{&op_ld_r_sph_cb}, // LD_R_SPH
{&op_ld_r_spl_cb}, // LD_R_SPL
{&op_add_r_i_cb}, // ADD_R_I
{&op_adc_r_i_cb}, // ADC_R_I
{&op_sbc_r_i_cb}, // SBC_R_I
{&op_and_r_i_cb}, // AND_R_I
{&op_or_r_i_cb}, // OR_R_I
{&op_xor_r_i_cb}, // XOR_R_I
{&op_cp_r_i_cb}, // CP_R_I
{&op_fan_r_i_cb}, // FAN_R_I
{&op_ld_r_i_cb}, // LD_R_I
{&op_add_r_q_cb}, // ADD_R_Q
{&op_adc_r_q_cb}, // ADC_R_Q
{&op_sub_cb}, // SUB
{&op_sbc_r_q_cb}, // SBC_R_Q
{&op_and_r_q_cb}, // AND_R_Q
{&op_or_r_q_cb}, // OR_R_Q
{&op_xor_r_q_cb}, // XOR_R_Q
{&op_ld_r_q_cb}, // LD_R_Q
{&op_ldpx_r_cb}, // LDPX_R
{&op_ldpy_r_cb}, // LDPY_R
{&op_cp_r_q_cb}, // CP_R_Q
{&op_fan_r_q_cb}, // FAN_R_Q
{&op_rlc_cb}, // RLC
{&op_rrc_cb}, // RRC
{&op_inc_mn_cb}, // INC_MN
{&op_dec_mn_cb}, // DEC_MN
{&op_acpx_cb}, // ACPX
{&op_acpy_cb}, // ACPY
{&op_scpx_cb}, // SCPX
{&op_scpy_cb}, // SCPY
{&op_not_cb}, // NOT
{NULL}
};
u12_t getShiftArg0(u12_t code, u12_t mask) {
if (mask==MASK_6B || mask==0xFCF) return 4;
if (code==0xA80 || code==0xA90 || code==0xAA0 || code==0xAB0 || code==0xAC0 || code==0xAD0 || code==0xAE0 || code==0xEC0 || code==0xEE0 || code==0xEF0 || code==0xF00 || code==0xF10) return 2;
return 0;
}
u12_t getMaskArg0(u12_t shiftArg, u12_t mask) {
if (mask==MASK_6B) return 0x030;
if (mask==MASK_8B && shiftArg==2) return 0x00C;
return 0;
}
static timestamp_t wait_for_cycles(timestamp_t since, u8_t cycles) {
timestamp_t deadline;
tick_counter += cycles;
if (CPU_SPEED_RATIO == 0) {
/* Emulation will be as fast as possible */
return g_hal->get_timestamp();
}
deadline = since + (cycles * ts_freq)/(TICK_FREQUENCY * CPU_SPEED_RATIO);
g_hal->sleep_until(deadline);
return deadline;
}
static void process_interrupts(void)
{
u8_t i;
/* Process interrupts in priority order */
for (i = 0; i < INT_SLOT_NUM; i++) {
if (interrupts[i].triggered) {
//printf("IT %u !\n", i);
SET_M(sp - 1, PCP);
SET_M(sp - 2, PCSH);
SET_M(sp - 3, PCSL);
sp = (sp - 3) & 0xFF;
CLEAR_I();
np = TO_NP(NBP, 1);
pc = TO_PC(PCB, 1, interrupts[i].vector);
call_depth++;
ref_ts = wait_for_cycles(ref_ts, 12);
interrupts[i].triggered = 0;
}
}
}
static void print_state(u8_t op_num, u12_t op, u13_t addr)
{
}
//static char logMsg[40];
void cpu_reset(void)
{
u13_t i;
/* Registers and variables init */
pc = TO_PC(0, 1, 0x00); // PC starts at bank 0, page 1, step 0
np = TO_NP(0, 1); // NP starts at page 1
a = 0; // undef
b = 0; // undef
x = 0; // undef
y = 0; // undef
sp = 0; // undef
flags = 0;
//sprintf(logMsg, "Start pc 1:0x%04X, %d", pc, pc); g_hal->log(LOG_ERROR, logMsg);
/* Init RAM to zeros */
for (i = 0; i < MEMORY_SIZE; i++) {
memory[i] = 0;
}
/*for (i = 0; i < MEM_IO_SIZE; i++) {
io_memory[i] = 0;
} */
//io_memory[REG_K40_K43_BZ_OUTPUT_PORT - MEM_IO_ADDR_OFS] = 0xF; // Output port (R40-R43)
//io_memory[REG_LCD_CTRL - MEM_IO_ADDR_OFS] = 0x8; // LCD control
/* TODO: Input relation register */
cpu_sync_ref_timestamp();
}
bool_t cpu_init(u32_t freq)
{
//g_program = program;
//g_breakpoints = breakpoints;
ts_freq = freq;
cpu_reset();
return 0;
}
void cpu_release(void)
{
}
u12_t getProgramOpCode(u12_t pc) {
u12_t i = pc >> 1; // divided by 2
if ((pc & 0x1)==0) { // if pc is a even number
return (pgm_read_byte_near(g_program_b12+i+i+i) << 4) | ((pgm_read_byte_near(g_program_b12+i+i+i+1) >> 4) & 0xF);
}
return (pgm_read_byte_near(g_program_b12+i+i+i+1) << 8) | pgm_read_byte_near(g_program_b12+i+i+i+2);
}
/*
typedef struct {
u12_t code;
u12_t mask;
u8_t cycles;
} op_t0;
*/
int cpu_step(void)
{
u12_t op;
u8_t i;
//breakpoint_t *bp = g_breakpoints;
static u8_t previous_cycles = 0;
op = getProgramOpCode(pc);
//op_t0 *ops = (op_t0 *)pgm_read_ptr_near(ops0);
/* Lookup the OP code */
for (i = 0; pgm_read_byte_near(&ops0[i].cycles) != 0; i++) {
if ((op & pgm_read_word_near(&ops0[i].mask)) == pgm_read_word_near(&ops0[i].code)) {
break;
}
}
//sprintf(logMsg, "op-code 0x%X (pc = 0x%04X)", op, pc); g_hal->log(LOG_ERROR, logMsg);
if (pgm_read_byte_near(&ops0[i].cycles) == 0) {
//printf(logMsg, "Unknown op-code 0x%X (pc = 0x%04X)\n", op, pc); g_hal->log(LOG_ERROR, logMsg);
return 1;
}
op_t0 ops;
ops.code=pgm_read_word_near(&ops0[i].code);
ops.mask=pgm_read_word_near(&ops0[i].mask);
ops.cycles=pgm_read_byte_near(&ops0[i].cycles);
next_pc = (pc + 1) & 0x1FFF;
/* Display the operation along with the current state of the processor */
print_state(i, op, pc);
/* Match the speed of the real processor
* NOTE: For better accuracy, the final wait should happen here, however
* the downside is that all interrupts will likely be delayed by one OP
*/
ref_ts = wait_for_cycles(ref_ts, previous_cycles);
op_t1 ops11;
ops11.cb1 = pgm_read_ptr_near(&ops1[i].cb1);
/* Process the OP code */
if (ops11.cb1 != NULL) {
u12_t shiftArg0 = getShiftArg0(ops.code,ops.mask);
u12_t maskArg0 = getMaskArg0(shiftArg0,ops.mask);
if (maskArg0 != 0) {
/* Two arguments */
//ops[i].cb((op & ops[i].mask_arg0) >> ops[i].shift_arg0, op & ~(ops[i].mask | ops[i].mask_arg0));
ops11.cb1((op & maskArg0) >> shiftArg0, op & ~(ops.mask | maskArg0));
} else {
/* One arguments */
//ops[i].cb((op & ~ops[i].mask) >> ops[i].shift_arg0, 0);
ops11.cb1((op & ~ops.mask) >> shiftArg0, 0);
}
}
/* Prepare for the next instruction */
pc = next_pc;
previous_cycles = ops.cycles;
if (i > 0) {
/* OP code is not PSET, reset NP */
np = (pc >> 8) & 0x1F;
}
/* Handle timers using the internal tick counter */
if (tick_counter - clk_timer_timestamp >= TIMER_1HZ_PERIOD) {
do {
clk_timer_timestamp += TIMER_1HZ_PERIOD;
} while (tick_counter - clk_timer_timestamp >= TIMER_1HZ_PERIOD);
generate_interrupt(INT_CLOCK_TIMER_SLOT, 3);
}
if (prog_timer_enabled && tick_counter - prog_timer_timestamp >= TIMER_256HZ_PERIOD) {
do {
prog_timer_timestamp += TIMER_256HZ_PERIOD;
prog_timer_data--;
if (prog_timer_data == 0) {
prog_timer_data = prog_timer_rld;
generate_interrupt(INT_PROG_TIMER_SLOT, 0);
}
} while (tick_counter - prog_timer_timestamp >= TIMER_256HZ_PERIOD);
}
/* Check if there is any pending interrupt */
if (I && i > 0) { // Do not process interrupts after a PSET operation
process_interrupts();
}
/* Check if we could pause the execution */
/*while (bp != NULL) {
if (bp->addr == pc) {
return 1;
}
bp = bp->next;
} */
return 0;
}